收藏本站  |  水生所  |  中国科学院
当前位置:首页 > 近期论文
Implementation of UV-based advanced oxidation processes in algal medium recycling
文章来源:  |  发布时间:2018-08-22  |  【打印】 【关闭】  |  浏览:

论文名称                           

Implementation of UV-based advanced oxidation processes in algal medium recycling
作者 Wang, Wenxuan; Sha, Jun; Lu, Zhiying; Shao, Senlin; Sun, Peizhe; Hu, Qiang; Zhang, Xuezhi
摘要

Algae show great potential as sustainable feedstock for numerous bioproducts. However, large volume of water consumption during algal biomass production makes that the culture media recycling is a necessity due to economic and environmental concern. To avoid the negative effect of enriched organic matters in the harvested culture media, pre-treatment prior to medium replenishment and reuse is required. In this study, degradation of algenitic organic matters (AOM) in the culturemedia by UV-based photolysis processes (i.e., direct UV, UV/peroxydisulfate (PDS), UV/H2O2, and UV/NH2Cl) was explored. The results showed that UV, UV/PDS, UV/H2O2 and UV/NH2Cl caused a decrease of SUVA for 29.9%, 35.4%, 40.45%, and 22.6%, respectively, though the organic matter was almost notmineralized. Fluorescence excitation-emission matrix combined with parallel factor analysis indicated that UV/PDS and UV/H2O2 degraded 47.26%-56.31% of the fulvic-like and humic-like fractions in AOM. Powder activated carbon absorption and growth evaluation for the AOPs-treated media indicated that UV/PDS and UV/H2O2 processes not only could remove the growth inhibitors in the media, but were also beneficial to the algae growth. These results suggested that UV/PDS andUV/H2O2 could effectively degrade the hydrophobic components in AOM and converted the growth inhibition fraction of AOM in the recycled media into nutrient source for algal growth. Different from the general application of UV-based AOP in the wastewater treatment, this study provided an innovative idea about how to pre-treat AOM in the media recycling: utilization rather than removal, which was a more sustainable and environment-friendly technology. (C) 2018 Elsevier B.V. All rights reserved.

634 
 

页码

243
发表时间 2018
刊物名称  SCIENCE OF THE TOTAL ENVIRONMENT
全文链接 http://dx.doi.org/10.1016/j.scitotenv.2018.03.342
附件

相关文档
版权所有 © 中国科学院藻类生物学重点实验室 鄂ICP备050003091
地址:武汉市武昌东湖南路7号 邮编:430072 电话:027-68780839