收藏本站  |  水生所  |  中国科学院
当前位置:首页 > 近期论文
Cyanophage A-1(L) Adsorbs to Lipopolysaccharides of Anabaena sp. Strain PCC 7120 via the Tail Protein Lipopolysaccharide-Interacting Protein (ORF36)
文章来源:  |  发布时间:2019-07-04  |  【打印】 【关闭】  |  浏览:

论文名称                           

Cyanophage A-1(L) Adsorbs to Lipopolysaccharides of Anabaena sp. Strain PCC 7120 via the Tail Protein Lipopolysaccharide-Interacting Protein (ORF36)
作者 Xiong, Zhenzhen; Wang, Yali; Dong, Yanling; Zhang, Qiya; Xu, Xudong
摘要 Ecological functions of cyanophages in aquatic environments depend on their interactions with cyanobacterial hosts. The first step of phage-host interaction involves adsorption to the cell surface. We report that adsorption of a cyanophage, A-1(L), to the outer membrane of Anabaena sp. strain PCC 7120 is based on the binding of a tail protein, ORF36, to the O antigen of lipopolysaccharides (LPS). Removal of O antigen by gene inactivation abolished infection by A-1(L); consistently, preincubation of the cyanophage with extracted Anabaena LPS partially blocked infection. In contrast, inactivation of major outer membrane protein genes in Anabaena or addition of Synechocystis LPS showed no effect on infection. ORF35 and ORF36 are two predicted tail proteins of A-1(L). Antibodies against either ORF35 or ORF36 strongly inhibited infection. Enzyme-linked immunosorbent assay showed a specific interaction between ORF36 and the LPS of Anabaena sp. strain PCC 7120. These findings indicate that ORF35 and ORF36 are probably both required for adsorption of A-1(L) to the cell surface, but ORF36 specifically binds to the O antigen of LPS. IMPORTANCE Cyanophages play an important role in regulating the dynamics of cyanobacterial communities in aquatic environments. Hitherto, the mechanisms for cyanophage infection have been barely investigated. In this study, the first cyanophage tail protein that binds to the receptor (LPS) on cell surface was identified and shown to be essential for the A-1(L) infection of Anabaena sp. strain PCC 7120. The protein-LPS interaction may represent an important route for adsorption of cyanophages to their hosts.

201 

3

页码

 
发表时间 2019
刊物名称  JOURNAL OF BACTERIOLOGY
全文链接 http://dx.doi.org/10.1128/JB.00516-18
附件

相关文档
版权所有 © 中国科学院藻类生物学重点实验室 鄂ICP备050003091
地址:武汉市武昌东湖南路7号 邮编:430072 电话:027-68780839